
24 Series EEPROM Application Note

Page 1 of 16 Rev. B

1. Introduction
This application note provides assistance and guidance on how to use GIANTEC I2C serial EEPROM

products. This is a generic guide, if the application cannot be met, please contact us for specific advice.

The following topics are discussed one by one:

➢ Power supply & power on reset

➢ Power saving

➢ IO Configuration

➢ Check completion of Write Cycle

➢ Write-protect application

➢ Data throughput

➢ Schematic of typical application

➢ Recommendation of PCB Layout

➢ Reference design of software

2. Power supply & power on reset
GIANTEC 24 series EE products work well under stable voltage within operating range specified in

datasheet respectively. For a robust and reliable system design, please pay more attention to the following

items:

2.1 Ensure VCC stable

In order to filter out small ripples on VCC, connect a decoupling capacitor (typically 0.1f) between

VCC and GND is recommended (Shown in figure 1). In addition, it is recommended to tie the pull-up

resistor to the same VCC power source as EEPROM, if MCU is powered by a different VCC power

source.

Figure 1: GIANTEC 24 series EEPROM recommended connections

2.2 Power on reset

During power ramp up, once VCC level reaches the power on reset threshold, the EEPROM internal

logic is reset to a known state. While VCC reaches the stable level above the minimum operation

voltage, the EEPROM can be operated properly. Therefore, in a good power on reset, VCC should

always begin at 0V and rise straight to its normal operating level, instead of being at an uncertain level.

Shown in figure 2. Only after a good power on reset, can EEPROM work normally. The operating

range of VCC can be found in the datasheet. It is recommended to do software reset by MCU

immediately after POR to further ensure the proper initialization of the device.

24 Series EEPROM Application Note

Page 2 of 16 Rev. B

Figure 2: Power on reset

Symbol Parameter min max unit

Trise Vbot to VCC min 0.1 1 ms

Twait VCC Min to Instruction 5 ms

Note：Vcc needs to climb to a high level before SCL,SDA and WP, or at the same time

2.3 Power down-up Timing

During power down, the minimum voltage level that VCC must drop to prior resume back to the

normal operating level is 0.2V to ensure the proper POR process, Shown in figure 3

VCC

Time

VCC（max）

VCC（min）

Vbot

Tpoff

Trise

Twait

SCL&SDA is Invalid Instruction

 Allowed

TriseTfall

Figure 3: Power down-up Timing

Symbol Parameter min max unit

Vbot VCC at power off 0.2 V

Tfall VCC fall time 10 ms

Tpoff VCC at power off time 20 ms

SCL

SDA

VCC

Trise

Twait

24 Series EEPROM Application Note

Page 3 of 16 Rev. B

2.4 Software reset

In case of no way to know the current state of EEPROM or want to cancel the current operation of

EEPROM, usually software reset is used to make EEPROM enter standby mode, but software reset

cannot reset the internal address counter of EEPROM device. Software reset is caused by a START

condition that is sent by master device. During the process of EEPROM read/write operation,

whenever recognizes the START condition, current operation will be stopped. However, the following

cases need to be considered:

1) Master device sends a START condition while the EEPROM is executing a read instruction and

sending bit “0” to master device, because SDA is being driven low by EEPROM, EEPROM

cannot recognize this START condition and thus cannot make software reset happen. In order to

solve this kind of issue, master device need to send nine sequential bits “1” after START

condition, thus EEPROM will not be able to get the response from master device, therefore force

an internal reset to be generated, Shown in figure 4.

2) Master device sends a START condition while the EEPROM is acknowledging a WRITE

instruction and is driving SDA low, even though the master device sends nine sequential bits “1”,

the EEPROM cannot be reset. In this case, master device need to send a START condition after

nine sequential bits “1” to make EEPROM reset, Shown in figure 5.

After device internal reset, master device may send a STOP condition to bring EEPROM into standby

mode. Therefore, a full reliable software reset process will comprise a START condition, 9 sequential

bits “1”, a START condition and a STOP condition. The reference code can be found in chapter 10.

3. Power saving
To reduce the power consumption, the following cases need to be considered:

3.1 Whenever no need to operate EEPROM, bring it into standby mode. In this mode, the power

consumption is minimum correspondingly. Following cases can bring EEPROM into standby mode:

1) After power-up, and remain this state until SCL or SDA toggles;

2) Recognize a STOP signal after a non-read operation is initiated;

3) Completion of internal write operation.

S

T

A

R

T

S

T

O

P

1 1 1 1 1 1 1 1 1

Figure 4: Software reset

S

T

A

R

T

S

T

A

R

T

S

T

O

P

1 1 1 1 1 1 1 1 1

Figure5: Software reset

24 Series EEPROM Application Note

Page 4 of 16 Rev. B

3.2 Usually, pull-up or pull-down resistor contributes to power consumption too. Under the same

conditions, big resistor consumes less power, and small resistor consumes more power;

3.3 The power consumption is maximum correspondingly during its write cycle. If a large amount of data

needs to be written into the EEPROM, definitely the page write mode consumes less time and power

than byte write mode. Therefore, if there are a lot of data to be written, the page write mode should be

used instead of byte write mode. If there are a lot of data to be read, the sequential read mode will be

recommended. The sequential read mode can improve the read efficiency and reduce the power

consumption as well.

4. IO Configuration
In order to reduce the possibility of wrong operation inadvertently due to noise, it is recommended that

SDA pin and SCL pin should be tied to a proper pull-up resistor to improve the anti-jamming capability of

EEPROM. If the pull-up resistors are not used in a ready-made application, it is recommended to set SCL

and SDA high after POR. It will bring EEPROM into a known high-level state after POR. In general

applications, the pull-up resistor needs to be considered at the beginning of design according to following

suggestion:

1) Since pull-up resistor affects the coupling capacitor on SDA bus as well as the rise time of SDA, thus it

will impact the bus transmission efficiency. For example, if read operation is executed quickly enough,

SDA will be sampled already by MCU before it rises to stable high level, then MCU may get the wrong

data. To solve these kinds of issues, the frequency of SCL need to be reduced. Usually reducing the

MCU frequency or adding a fixed delay during the read operation will help a lot, however, meantime

the transmission efficiency between MCU and EEPROM will be reduced too. Therefore, another way

may be used to speed up bus rising time, technical speaking, small pull-up resistor will make SDA bus

rise more quickly than big pull-up resistor, thus data transmission efficiency will be higher as well. In

general application, it is recommended to select pull-up resistor from 1.5k to 3.5k for fast mode and

3.5K to 12K for standard mode.

2) Technical speaking, only if the MCU IO pin which is tied to SCL is in open drain mode, a pull-up

resistor is need by SCL, but in order to reduce the noise on SCL after POR, always it is recommended

to tie a proper pull-up resistor to SCL. This will be helpful to make EEPROM device enter a known

stable high-level state after POR. The pull-up resistor’s value is recommended to be same with the pull-

up resistor value on SDA.

3) A0,A1,A2,WP can be directly connected to VCC or GND, or through a resistor connected to VCC or

GND, the resistance value is recommended to be the same as the SDA pull-up resistor resistance value

5. Check completion of Write Cycle
Definitely, effective checking of the completion of write cycle will improve the efficiency of the write

operation. Once recognize a STOP condition, EEPROM will start its internal write cycle, and then the

checking for write cycle can be started. The steps for checking completion of write cycle are listed as below:

1) Send a dummy write operation to EEPROM, the dummy write operation includes a START condition

and a slave address, shown in figure 6.

Figure 6: Dummy write operation

24 Series EEPROM Application Note

Page 5 of 16 Rev. B

2) Poll ACK returned from EEPROM. If the write cycle is over, the ACK will be returned, if the write

cycle is underway, the ACK will not be returned and step 1 and step 2 need to be repeated until the

write cycle is over.

The referenced code can be found in chapter 10.

6. Write-protect application
GIANTEC I2C serial EEPROM provides hardware write protection function. This function can be enabled

or disabled depends WP pin, if WP is high, the hardware write protection function is enabled and the write

operation on EEPROM will be ignored, if WP is low or floating, the hardware protection function is

disabled and the write operation on EEPROM is valid. In general applications, WP can be tied to VCC,

GND or IO pin of MCU. If the write protection function is controlled by software, it is recommended to

drive WP high or low and keep WP stable before the START condition of write operation. This will help

EEPROM to check whether the write protection function is enabled or not in time.

Note:

It is recommended that customers enable write protection to prevent accidental data modification,

particularly for read-only applications, applications in complex electromagnetic environments, and

applications requiring data access under unstable power conditions.

For applications requiring frequent data writes, it is not recommended to frequently enable and disable

write protection via software (as this may exceed the EEPROM cycling lifespan). It is recommended to

control write protection using the WP PIN.

7. Data throughput
To improve the data throughput, the following solutions are recommended:

1) In order to improve the data throughput, hardware-wise, the operation frequency between MCU and

EEPROM may be improved, for example, a faster MCU or a higher frequency oscillator may be chosen,

software-wise, the delay between SCK transitions need be reduced, those instructions which need less

machine cycles will be preferred, for example, SETB can save a machine cycle time comparing with

MOV. The pull-up resistor value on SDA need also be chosen as smaller as possible to match the MCU

operation speed, but this way will increase the power consumption.

2) The page write mode is recommended to write a large amount of data instead of byte write mode. The

page write mode consumes less time than byte write mode, so it can improve the transmission efficiency;

3) The sequential read is recommended to read serial data instead of byte read. The sequential read

consumes less time than byte read, so it can improve the transmission efficiency;

4) While an internal write cycle is underway, please consider the solution recommended in chapter 5 to

check if write cycle is over. The traditional fixed delay solution always consumes more time and thus

reduces the transmission efficiency.

8. Schematic of typical application
1) If there is only one EEPROM on I2C bus, the recommended connection is shown in figure 1. If WP

needs not to be controlled by MCU, the WP pin can be tied to GND (hardware protection disabled) or

VCC (hardware protection enabled).

2) If there are several EEPROM devices on I2C bus, the connection is similar to previous case. The

difference is that each EEPROM need to be set an address, A0, A1 and A2 need to be configured.

Shown in figure 7, the address is from 0 to 7 respectively as the order from left to right. If master device

need access one device of them, A0, A1 and A2 bit in slave address need to be configured properly,

then the corresponding EEPROM device can be accessed. The format of slave address is shown in

24 Series EEPROM Application Note

Page 6 of 16 Rev. B

figure 8. For example, if A0, A1 and A2 of some EEPROM are set as high, high and low respectively,

the slave address should be binary format “10100110”.

Figure 7: Several EEPROM on a bus

Figure 8: Slave address

9. Recommendation of PCB Layout
In order to reduce the crosstalk interference on I2C bus, it is recommended to lay SDA line and SCL line in

pairs. The wire length of SDA and SCL is recommended to lay as shorter as possible. The longer wire and

crossed wire should be avoided. If PCB size is large enough, the GND line should be lay in the middle of

these bus lines. If the length of the bus lines exceeds 10 cm, the recommended wiring pattern is listed as

below:

1) Bus with VCC and GND together:

2) Bus with only the GND together:

24 Series EEPROM Application Note

Page 7 of 16 Rev. B

10. Reference design of software

10.1 Byte write flow chart

10.2 Page write flow chart

START Condition

STOP Condition

Send Slave

Address

Send Address

Send Data

Success

Success

Success

Return error message

Fail

Fail

Fail

START Condition

STOP Condition

Send Slave

Address

Send address

Send data

Success

Success

Success

Return error message

Fail

Fail

Fail

Is sending

over？

Yes No

24 Series EEPROM Application Note

Page 8 of 16 Rev. B

10.3 Current address read flow chart

10.4 Random address read flow chart

START Condition

STOP Condition

Send Slave

Address

Success

Return error message

Fail

Read Data

START Condition

STOP Condition

Send Slave

Address

Send Address

Send Slave

Address

Success

Success

Success

Return error message START Condition

Read Data

Fail Fail

Fail

Dummy Write

24 Series EEPROM Application Note

Page 9 of 16 Rev. B

10.5 Current address sequential read flow chart

10.6 Random address sequential read flow chart

START Condition

STOP Condition

Send Slave

Address

Success

Return error message

Fail

Read Data

Is reading

over？

Yes

No

START Condition

STOP Condition

Send Slave

Address

Send Address

Send Slave

Address

Success

Success

Success

Return error message START Condition

Read Data

Fail

Fail

Fail

Is Reading

over?

Yes

No

Dummy Write

24 Series EEPROM Application Note

Page 10 of 16 Rev. B

10.7 Write Cycle polling flow chart

10.8 Software reset flow chart

START Condition

STOP Condition

Send 9 bits “1”

START Condition

STOP Condition

Send Slave

Address

Have it exceeded

the maximum retry

times?

Found ACK

Didn’t find ACK

Return error message

Yes

No

START Condition

24 Series EEPROM Application Note

Page 11 of 16 Rev. B

10.9 Shift bit out flow chart

10.10 Shift bit in flow chart

10.11 Reference code

The schematic referenced by this program is shown in figure 1:

/***

24cxx.c

Description:

1.This program is based on GIANTEC I2C EEPROM 24C01 and Keil C51 7.50.

2.The highest oscillator frequency with a traditional standard 8051 MCU supported by this program is 48Mhz.

3.Main functions are listed as followed:

 1) Set status register and addresses from 0x0600-0x07FF as read-only;

 2) Write 16 bytes from buf1 into address from 0x00-0x0F by page write,

 then read these data from these address and put them into buf2.

**/

#include "reg51.h"

#include "intrins.h"

sbit SCL=P1^1;

sbit SDA=P1^0;

sbit WP=P1^2;

#define StartCondition SDA=1;SCL=1;SDA=0

#define StopCondition SDA=0;SCL=1;SDA=1

Drive SCL low

Set SDA as MSb of

address or data

Have ACK

been found?

Have 8 bits

been sent？

Return error message

Yes

No

Shift address or data left,

and then drive SCL high Sending is success

No Yes

Drive SCL low, after

SDA is stable, and then

drive SCL high Have 8 bits

been sent?

Yes

No

Shift the byte variable

left and read the SDA Return data

24 Series EEPROM Application Note

Page 12 of 16 Rev. B

#define SendAck SDA=0;SCL=1;SCL=0;SDA=1

#define PAGESIZE 8

/***

Pattern description：

1.DeviceNO Device number on I2C bus

1.Address EEPROM internal storage address, from 0x00-0x7F in 24C01B;

2.Data Data written into EEPROM or read from EEPROM;

3.Length Byte number written into EEPROM or read from EEPROM;

4.Pdata a pointer to data storage buffer;

***/

//Byte Write, if success return 1, if fail return 0.

bit WriteByte(unsigned char DeviceNO,unsigned char Address,unsigned char Data);

//Random read, if success return 1, if fail return 0.

bit ReadByte_RND(unsigned char DeviceNO,unsigned char Address,unsigned char *Pdata);

//Write data bit by bit, if success return 1, if fail return 0.

bit WriteEE(unsigned char Data);

//Read data bit by bit, return byte data.

unsigned char ReadEE();

//Polling write cycle, if success return 1, if timeout return 0.

bit PollingACK(unsigned char DeviceNO);

//Page write, if success return 1, if fail return 0.

bit WritePage(unsigned char DeviceNO,unsigned char Address,unsigned char *Pdata);

//Current address read, if success return 1, if fail return 0.

bit ReadByte(unsigned char DeviceNO,unsigned char *Pdata);

//Random sequential read, if success return 1, if fail return 0.

bit Read_SEQU_RND(unsigned char DeviceNO,unsigned char Address,unsigned char *Pdata,unsigned char Length);

//Current address sequential read, if success return 1, if fail return 0.

bit Read_SEQU(unsigned char DeviceNO,unsigned char *Pdata,unsigned char Length);

//software reset

void ResetEE();

main()

{

 unsigned char a;

 unsigned char buf1[]={7,6,5,4,3,2,1,0};

 unsigned char buf2[]={0,0,0,0,0,0,0,0};

 SCL=1;

 SDA=1;

 WP=0; //Disable EEPROM write protection

 if(WritePage(0,0,buf1)) //Transfer data in buf1 to page 0 in device 0

 if(PollingACK(0))

 if(WriteByte(0,8,0x55)) //Write 0x55 into address 8 in device 0

 if(PollingACK(0))

 if(ReadByte_RND(0,0,&a)) //Read data from address 0 in device 0 and put it to a

 if(ReadByte(0,&a)) //Read data from current address in device 0 and put it to a

 if(Read_SEQU(0,buf2,3)) //Transfer 3 sequential bytes from current address in device 0 to buf2

 if(Read_SEQU_RND(0,0,buf2,8)) //Transfer 8 sequential bytes from address 0 in device 0 to buf2

 if(ReadByte(0,&a)); //Transfer data in current address in device 0 to a

24 Series EEPROM Application Note

Page 13 of 16 Rev. B

bit WriteByte(unsigned char DeviceNO,unsigned char Address,unsigned char Data)

{

 unsigned char SAddr_W=0xa0;

 SAddr_W|=DeviceNO<<1; //Translate device NO to slave address

 StartCondition;

 if(WriteEE(SAddr_W)) //Send Slave Address

 if(WriteEE(Address)) //Send address

 if(WriteEE(Data)) //Send data

 {

 StopCondition;

 return 1;

 }

 return 0;

 }

bit ReadByte_RND(unsigned char DeviceNO,unsigned char Address,unsigned char *Pdata)

{

 unsigned char SAddr_W=0xa0;

 unsigned char SAddr_R=0xa1;

 SAddr_W|=DeviceNO<<1; // Translate device NO to slave address

 SAddr_R|=DeviceNO<<1; // Translate device NO to slave address

 StartCondition;

 if(!WriteEE(SAddr_W)) //Send slave address

 return 0;

 if(!WriteEE(Address)) //Send data

 return 0;

 StartCondition;

 if(!WriteEE(SAddr_R)) //Send slave address

 return 0;

 *Pdata=ReadEE(); //read one byte

 StopCondition;

 return 1;

 }

bit WriteEE(unsigned char Data)

{

 unsigned char i;

 for(i=0;i<8;i++)

 {

 SCL=0;

 SDA=(bit)(Data&0x80); //Shift data to SDA from MSb to LSb

 Data<<=1;

 SCL=1;

 }

 //Release SDA

 SCL=0;

 SDA=1;

 SCL=1;

 //Check ACK

 if(SDA)

 return 0;

 SCL=0;

 return 1;

}

unsigned char ReadEE()

{

 unsigned char i,j,rdata;

 SCL=0;

 rdata=0;

 for(i=0;i<8;i++)

24 Series EEPROM Application Note

Page 14 of 16 Rev. B

 {

 SCL=1;

 //Read SDA

 if(SDA==1)

 j=1;

 else

 j=0;

 rdata=(rdata<<1)|j;

 SCL=0;

 }

 return(rdata);

 }

bit PollingACK(unsigned char DeviceNO)

{

 unsigned char SAddr_W=0xa0;

 unsigned char Polling_Num=100;

 SAddr_W|=DeviceNO<<1; //Translate device NO to Slave Address

 while(Polling_Num--) //Check the maximum retry times

 {

 StartCondition;

 if(WriteEE(SAddr_W)) //Send slave address

 {

 StopCondition;

 return 1;

 }

 }

 return 0;

 }

bit WritePage(unsigned char DeviceNO,unsigned char Address,unsigned char *Pdata)

{

 unsigned char SAddr_W=0xa0;

 unsigned char i;

 SAddr_W|=DeviceNO<<1; //Translate device NO to Slave Address

 StartCondition;

 if(WriteEE(SAddr_W)) //Send Slave Address

 if(WriteEE(Address)) //Send address

 for(i=0;i<PAGESIZE;i++) //Check page size

 {

 if(!WriteEE(*(Pdata+i)))

 return 0;

 }

 else

 return 0;

 else

 return 0;

 StopCondition;

 return 1;

 }

bit Read_SEQU_RND(unsigned char DeviceNO,unsigned char Address,unsigned char *Pdata,unsigned char Length)

{

 unsigned char SAddr_W=0xa0;

 unsigned char SAddr_R=0xa1;

 unsigned char i;

 SAddr_W|=DeviceNO<<1; //Translate device NO to Slave Address

 SAddr_R|=DeviceNO<<1; //Translate device NO to Slave Address

 StartCondition;

 if(!WriteEE(SAddr_W)) //Send Slave Address

 return 0;

 if(!WriteEE(Address)) //Send address

24 Series EEPROM Application Note

Page 15 of 16 Rev. B

 return 0;

 StartCondition;

 if(!WriteEE(SAddr_R)) //Send Slave Address

 return 0;

 for(i=1;i<Length;i++)

 {

 *Pdata=ReadEE();

 Pdata++;

 SendAck;

 }

 *Pdata=ReadEE();

 StopCondition;

 return 1;

 }

bit Read_SEQU(unsigned char DeviceNO,unsigned char *Pdata,unsigned char Length)

{

 unsigned char SAddr_R=0xa1;

 unsigned char i;

 SAddr_R|=DeviceNO<<1; //Translate device NO to Slave Address

 StartCondition;

 if(!WriteEE(SAddr_R)) //Send Slave Address

 return 0;

 for(i=1;i<Length;i++)

 {

 *Pdata=ReadEE();

 Pdata++;

 SendAck;

 }

 *Pdata=ReadEE();

 StopCondition;

 return 1;

 }

bit ReadByte(unsigned char DeviceNO,unsigned char *Pdata)

{

 unsigned char SAddr_R=0xa1;

 SAddr_R|=DeviceNO<<1; //Translate device NO to Slave Address

 StartCondition;

 WriteEE(SAddr_R); //Send Slave Address

 *Pdata=ReadEE();

 StopCondition;

 return 1;

 }

//software reset

void ResetEE()

{

 unsigned char i;

 StartCondition;

 //Send nine sequential bits ‘1’

 for(i=0;i<9;i++)

 {

 SCL=0;

 SDA=1;

 SCL=1;

 }

 StartCondition;

 StopCondition;

 }

24 Series EEPROM Application Note

Page 16 of 16 Rev. B

11. REVISION HISTORY

Revision Date Descriptions

V1.0 Jun.2022 Initial Version

V1.1 July.2023 Add comment

V1.2 Nov.2025 Add some notes in Section 6

	1. Introduction
	2. Power supply & power on reset
	2.1 Ensure VCC stable
	2.2 Power on reset
	2.3 Power down-up Timing
	2.4 Software reset

	3. Power saving
	4. IO Configuration
	5. Check completion of Write Cycle
	6. Write-protect application
	7. Data throughput
	8. Schematic of typical application
	9. Recommendation of PCB Layout
	10. Reference design of software
	11. REVISION HISTORY

