24 Series EEPROM Application Note i

1. Introduction

This application note provides assistance and guidance on how to use GIANTEC IC serial EEPROM
products. This is a generic guide, if the application cannot be met, please contact us for specific advice.
The following topics are discussed one by one:

Power supply & power on reset

Power saving

10 Configuration

Check completion of Write Cycle

Write-protect application

Data throughput

Schematic of typical application

Recommendation of PCB Layout

Reference design of software

VVVVVVVVY

2. Power supply & power on reset

GIANTEC 24 series EE products work well under stable voltage within operating range specified in
datasheet respectively. For a robust and reliable system design, please pay more attention to the following
items:

2.1 Ensure VCC stable
In order to filter out small ripples on VCC, connect a decoupling capacitor (typically 0.1uf) between
VCC and GND is recommended (Shown in figure 1). In addition, it is recommended to tie the pull-up
resistor to the same VCC power source as EEPROM, if MCU is powered by a different VCC power

source.
\Vce
Y ¢
5: 0.1uf
AE o Vee
«— 1 8
Al y WP To MCU
4—[2 § 7] >
&2 % §1CL
+—]3 3 6] »
Ond SDA&
4_E 4 5] P

—_—

Figure 1: GIANTEC 24 series EEPROM recommended connections

2.2 Power on reset

During power ramp up, once VCC level reaches the power on reset threshold, the EEPROM internal
logic is reset to a known state. While VCC reaches the stable level above the minimum operation
voltage, the EEPROM can be operated properly. Therefore, in a good power on reset, VCC should
always begin at 0V and rise straight to its normal operating level, instead of being at an uncertain level.
Shown in figure 2. Only after a good power on reset, can EEPROM work normally. The operating
range of VCC can be found in the datasheet. It is recommended to do software reset by MCU
immediately after POR to further ensure the proper initialization of the device.

Page 1 of 16 Rev. B

24 Series EEPROM Application Note

Note: Vcc needs to climb to a high level before SCL,SDA and WP, or at the same time

Trise—»| [-—
VCC
— Twait
SCL
SDA X X X
Figure 2: Power on reset
Symbol Parameter min | max | unit
Trise Vbot to VCC min 0.1 1 ms
Twait | VCC Min to Instruction 5 ms

2.3 Power down-up Timing
During power down, the minimum voltage level that VCC must drop to prior resume back to the

normal operating level is 0.2V to ensure the proper POR process, Shown in figure 3

VCC A
vcec (imax-—r——————f " —"—"—"—"—"—————————————T——————
SCL&SDA is Invalid Instruction
< > Allowed
VCC (mn)——1——————f ———————— — — — — 2__Twait__=_ ———————
e
_ Tpoff
Voot ——pF—————— ----r - —-—-—-—-———— = — =
Time
Figure 3: Power down-up Timing
Symbol Parameter min | max | unit
Vot VCC at power off 0.2 v
Tfall VCC fall time 10 ms
Tpoff | VCC at power off time 20 ms

Page 2 of 16

Rev. B

24 Series EEPROM Application Note i

2.4 Software reset

In case of no way to know the current state of EEPROM or want to cancel the current operation of
EEPROM, usually software reset is used to make EEPROM enter standby mode, but software reset
cannot reset the internal address counter of EEPROM device. Software reset is caused by a START
condition that is sent by master device. During the process of EEPROM read/write operation,

whenever recognizes the START condition, current operation will be stopped. However, the following
cases need to be considered:

1) Master device sends a START condition while the EEPROM is executing a read instruction and
sending bit “0” to master device, because SDA is being driven low by EEPROM, EEPROM
cannot recognize this START condition and thus cannot make software reset happen. In order to
solve this kind of issue, master device need to send nine sequential bits “1” after START
condition, thus EEPROM will not be able to get the response from master device, therefore force
an internal reset to be generated, Shown in figure 4.

SR e-E®»
SO

\]‘]‘]‘]‘]‘]‘]‘]‘]/

Figure 4: Software reset

2) Master device sends a START condition while the EEPROM is acknowledging a WRITE
instruction and is driving SDA low, even though the master device sends nine sequential bits “1”,
the EEPROM cannot be reset. In this case, master device need to send a START condition after
nine sequential bits “1” to make EEPROM reset, Shown in figure 5.

Hmp=®
=R p-®n
TO=®

\1‘1‘1‘1‘1‘1‘1‘1‘1\/

Figure5: Software reset

After device internal reset, master device may send a STOP condition to bring EEPROM into standby
mode. Therefore, a full reliable software reset process will comprise a START condition, 9 sequential
bits “1”, a START condition and a STOP condition. The reference code can be found in chapter 10.

3. Power saving

To reduce the power consumption, the following cases need to be considered:

3.1 Whenever no need to operate EEPROM, bring it into standby mode. In this mode, the power
consumption is minimum correspondingly. Following cases can bring EEPROM into standby mode:
1) After power-up, and remain this state until SCL or SDA toggles;
2) Recognize a STOP signal after a non-read operation is initiated,
3) Completion of internal write operation.

Page 3 of 16 Rev. B

24 Series EEPROM Application Note i

3.2 Usually, pull-up or pull-down resistor contributes to power consumption too. Under the same
conditions, big resistor consumes less power, and small resistor consumes more power;

3.3 The power consumption is maximum correspondingly during its write cycle. If a large amount of data
needs to be written into the EEPROM, definitely the page write mode consumes less time and power
than byte write mode. Therefore, if there are a lot of data to be written, the page write mode should be
used instead of byte write mode. If there are a lot of data to be read, the sequential read mode will be
recommended. The sequential read mode can improve the read efficiency and reduce the power
consumption as well.

4. 10 Configuration

In order to reduce the possibility of wrong operation inadvertently due to noise, it is recommended that

SDA pin and SCL pin should be tied to a proper pull-up resistor to improve the anti-jamming capability of

EEPROM. If the pull-up resistors are not used in a ready-made application, it is recommended to set SCL

and SDA high after POR. It will bring EEPROM into a known high-level state after POR. In general

applications, the pull-up resistor needs to be considered at the beginning of design according to following
suggestion:

1) Since pull-up resistor affects the coupling capacitor on SDA bus as well as the rise time of SDA, thus it
will impact the bus transmission efficiency. For example, if read operation is executed quickly enough,
SDA will be sampled already by MCU before it rises to stable high level, then MCU may get the wrong
data. To solve these kinds of issues, the frequency of SCL need to be reduced. Usually reducing the
MCU frequency or adding a fixed delay during the read operation will help a lot, however, meantime
the transmission efficiency between MCU and EEPROM will be reduced too. Therefore, another way
may be used to speed up bus rising time, technical speaking, small pull-up resistor will make SDA bus
rise more quickly than big pull-up resistor, thus data transmission efficiency will be higher as well. In
general application, it is recommended to select pull-up resistor from 1.5k to 3.5k for fast mode and
3.5K to 12K for standard mode.

2) Technical speaking, only if the MCU IO pin which is tied to SCL is in open drain mode, a pull-up
resistor is need by SCL, but in order to reduce the noise on SCL after POR, always it is recommended
to tie a proper pull-up resistor to SCL. This will be helpful to make EEPROM device enter a known
stable high-level state after POR. The pull-up resistor’s value is recommended to be same with the pull-
up resistor value on SDA.

3) A0,A1,A2,WP can be directly connected to VCC or GND, or through a resistor connected to VCC or
GND, the resistance value is recommended to be the same as the SDA pull-up resistor resistance value

5. Check completion of Write Cycle

Definitely, effective checking of the completion of write cycle will improve the efficiency of the write

operation. Once recognize a STOP condition, EEPROM will start its internal write cycle, and then the

checking for write cycle can be started. The steps for checking completion of write cycle are listed as below:

1) Send a dummy write operation to EEPROM, the dummy write operation includes a START condition
and a slave address, shown in figure 6.

s W
A T
=] Device T
T Address E
SDA
Bus
Activity #|K

mn=
0O

Figure 6: Dummy write operation

Page 4 of 16 Rev. B

24 Series EEPROM Application Note i

2) Poll ACK returned from EEPROM. If the write cycle is over, the ACK will be returned, if the write
cycle is underway, the ACK will not be returned and step 1 and step 2 need to be repeated until the
write cycle is over.

The referenced code can be found in chapter 10.

6. Write-protect application

GIANTEC I*C serial EEPROM provides hardware write protection function. This function can be enabled
or disabled depends WP pin, if WP is high, the hardware write protection function is enabled and the write
operation on EEPROM will be ignored, if WP is low or floating, the hardware protection function is
disabled and the write operation on EEPROM is valid. In general applications, WP can be tied to VCC,
GND or IO pin of MCU. If the write protection function is controlled by software, it is recommended to
drive WP high or low and keep WP stable before the START condition of write operation. This will help
EEPROM to check whether the write protection function is enabled or not in time.

Note:

It is recommended that customers enable write protection to prevent accidental data modification,
particularly for read-only applications, applications in complex electromagnetic environments, and
applications requiring data access under unstable power conditions.

For applications requiring frequent data writes, it is not recommended to frequently enable and disable
write protection via software (as this may exceed the EEPROM cycling lifespan). It is recommended to
control write protection using the WP PIN.

7. Data throughput

To improve the data throughput, the following solutions are recommended:

1) In order to improve the data throughput, hardware-wise, the operation frequency between MCU and
EEPROM may be improved, for example, a faster MCU or a higher frequency oscillator may be chosen,
software-wise, the delay between SCK transitions need be reduced, those instructions which need less
machine cycles will be preferred, for example, SETB can save a machine cycle time comparing with
MOV. The pull-up resistor value on SDA need also be chosen as smaller as possible to match the MCU
operation speed, but this way will increase the power consumption.

2) The page write mode is recommended to write a large amount of data instead of byte write mode. The
page write mode consumes less time than byte write mode, so it can improve the transmission efficiency;

3) The sequential read is recommended to read serial data instead of byte read. The sequential read
consumes less time than byte read, so it can improve the transmission efficiency;

4) While an internal write cycle is underway, please consider the solution recommended in chapter 5 to
check if write cycle is over. The traditional fixed delay solution always consumes more time and thus
reduces the transmission efficiency.

8. Schematic of typical application

1) If there is only one EEPROM on I’C bus, the recommended connection is shown in figure 1. If WP
needs not to be controlled by MCU, the WP pin can be tied to GND (hardware protection disabled) or
VCC (hardware protection enabled).

2) If there are several EEPROM devices on I°C bus, the connection is similar to previous case. The
difference is that each EEPROM need to be set an address, A0, A1 and A2 need to be configured.
Shown in figure 7, the address is from 0 to 7 respectively as the order from left to right. If master device
need access one device of them, A0, A1 and A2 bit in slave address need to be configured properly,
then the corresponding EEPROM device can be accessed. The format of slave address is shown in

Page 5 of 16 Rev. B

24 Series EEPROM Application Note i

figure 8. For example, if A0, A1 and A2 of some EEPROM are set as high, high and low respectively,
the slave address should be binary format “10100110”.

9 L3 I kS
a=ri=ris

£ w N -
24XXXXX
|

e w LN -
24XXXXX

= e o =
24X X XXX

To MCT

Figure 7: Several EEPROM on a bus

Bm ¢ 66 5 4 3 2 1 0
1 0 1 0 | A2 | A1 | A0 |RW

Figure 8: Slave address

9. Recommendation of PCB Layout

In order to reduce the crosstalk interference on I°C bus, it is recommended to lay SDA line and SCL line in
pairs. The wire length of SDA and SCL is recommended to lay as shorter as possible. The longer wire and
crossed wire should be avoided. If PCB size is large enough, the GND line should be lay in the middle of
these bus lines. If the length of the bus lines exceeds 10 cm, the recommended wiring pattern is listed as
below:

1) Bus with VCC and GND together:
DA

2) Bus with only the GND together:
DA

Gnd
HCL

Page 6 of 16 Rev. B

24 Series EEPROM Application Note

10. Reference design of software

10.1 Byte write flow chart

START Condition

l

Send Slave
Address

Fail

Success

Send Address Fail

Success

Send Data Fail

l Success

Y

STOP Condition Return error message

10.2 Page write flow chart

START Condition

l

Send Slave Fail

Address

Success

Fail

Send address

;| Success

Send data Fail R

l Success

Is sending
over?

No Yes

STOP Condition Return error message

Page 7 of 16 Rev. B

24 Series EEPROM Application Note

10.3 Current address read flow chart

START Condition

l

Send Slave

Fail

Address

Success

Read Data

A

y

STOP Condition

Return error message

104 Random address read flow chart

Dummy Write

START Condition

l

Fail

Send Slave Send Slave
Address Address
Success Success
Fail *
Send Address Read Data
Success
START Condition STOP Condition

v

Return error message

Page 8 of 16

Rev. B

24 Series EEPROM Application Note

10.5 Current address sequential read flow chart

START Condition

l

Send Slave Fail
Address

Success

A4

A

Read Data

l

Is reading
over?

A 4

STOP Condition Return error message

10.6 Random address sequential read flow chart

Dummy Write 1

Send Slave
Address

START Condition

l

Success

l

Read Data

Send Slave
Address

Success l

Fail

Send Address Is Reading

over?
Success l Yes
v A\ 4
START Condition STOP Condition Return error message

Page 9 of 16 Rev. B

24 Series EEPROM Application Note

10.7 Write Cycle polling flow chart

START Condition e

Have it exceeded
the maximum retry
times?

Didn’t find ACK

Send Slave
Address

Found ACK

STOP Condition Return error message

10.8 Software reset flow chart

START Condition

A 4

Send 9 bits “1”

A 4

START Condition

Y

STOP Condition

Page 10 of 16

Rev. B

24 Series EEPROM Application Note

10.9 Shift bit out flow chart

Yy

Drive SCL low

Have 8 bits No
been sent?

A 4

Set SDA as MSb of l Yes
address or data

Have ACK
been found?

y

Shift address or data left,
and then drive SCL high Sending is success Return error message

A4 y

10.10 Shift bit in flow chart

Drive SCL low, after N
SDA is stable, and then
drive SCL high Have 8 bits
—>.
been sent?
Shift the byte variable
left and read the SDA Return data

10.11 Reference code
The schematic referenced by this program is shown in figure 1:

/>k************************

24cxx.c
Description:
1.This program is based on GIANTEC I>)C EEPROM 24C01 and Keil C51 7.50.
2.The highest oscillator frequency with a traditional standard 8051 MCU supported by this program is 4§Mhz.
3.Main functions are listed as followed:
1) Set status register and addresses from 0x0600-0x07FF as read-only;
2) Write 16 bytes from bufl into address from 0x00-0x0F by page write,

then read these data from these address and put them into buf2.
R e e e Lty

#include "reg51.h"
#include "intrins.h"

sbit SCL=P1/1;
sbit SDA=P1/0;
sbit WP=P1/2;

#define StartCondition SDA=1;SCL=1;SDA=0
#define StopCondition SDA=0;SCL=1;SDA=1

Page 11 of 16 Rev. B

24 Series EEPROM Application Note

#define SendAck SDA=0;SCL=1;SCL=0;SDA=1
#define PAGESIZE 8

/***

Pattern description:

1.DeviceNO Device number on I>C bus

1.Address EEPROM internal storage address, from 0x00-0x7F in 24CO01B,;
2.Data Data written into EEPROM or read from EEPROM;

3.Length Byte number written into EEPROM or read from EEPROM;
4.Pdata a pointer to data storage buffer;

***/

//Byte Write, if success return 1, if fail return 0.
bit WriteByte(unsigned char DeviceNO,unsigned char Address,unsigned char Data);

//Random read, if success return 1, if fail return 0.
bit ReadByte RND(unsigned char DeviceNO,unsigned char Address,unsigned char *Pdata);

//Write data bit by bit, if success return 1, if fail return 0.
bit WriteEE(unsigned char Data);

//Read data bit by bit, return byte data.
unsigned char ReadEE();

//Polling write cycle, if success return 1, if timeout return 0.
bit PollingACK (unsigned char DeviceNO);

//Page write, if success return 1, if fail return 0.
bit WritePage(unsigned char DeviceNO,unsigned char Address,unsigned char *Pdata);

//Current address read, if success return 1, if fail return 0.
bit ReadByte(unsigned char DeviceNO,unsigned char *Pdata);

//Random sequential read, if success return 1, if fail return 0.
bit Read SEQU_RND(unsigned char DeviceNO,unsigned char Address,unsigned char *Pdata,unsigned char Length);

//Current address sequential read, if success return 1, if fail return 0.
bit Read SEQU(unsigned char DeviceNO,unsigned char *Pdata,unsigned char Length);

//software reset
void ResetEE();

main()

{

unsigned char a;

unsigned char buf1[]={7,6,5,4,3,2,1,0};
unsigned char buf2[]={0,0,0,0,0,0,0,0};

SCL=1;
SDA=1;
WP=0; //Disable EEPROM write protection
if(WritePage(0,0,bufl)) //Transfer data in bufl to page 0 in device 0
if(PollingACK(0))
if(WriteByte(0,8,0x55)) //Write 0x55 into address 8§ in device 0
if(PollingACK(0))
if(ReadByte RND(0,0,&a)) //Read data from address 0 in device 0 and putitto a
if(ReadByte(0,&a)) //Read data from current address in device 0 and put it to a
if(Read SEQU(0,buf2,3)) //Transfer 3 sequential bytes from current address in device 0 to buf2
if(Read SEQU _RND(0,0,buf2,8)) /[Transfer 8 sequential bytes from address 0 in device 0 to buf2
if(ReadByte(0,&a)); //Transfer data in current address in device 0 to a

Page 12 of 16 Rev. B

24 Series EEPROM Application Note

bit WriteByte(unsigned char DeviceNO,unsigned char Address,unsigned char Data)
{
unsigned char SAddr W=0xa0;
SAddr W|=DeviceNO<<1; //Translate device NO to slave address
StartCondition;
if(WriteEE(SAddr W)) //Send Slave Address
if(WriteEE(Address)) //Send address
if(WriteEE(Data)) //Send data
{
StopCondition;
return 1;

}

return 0;

}

bit ReadByte RND(unsigned char DeviceNO,unsigned char Address,unsigned char *Pdata)
{
unsigned char SAddr W=0xa0;
unsigned char SAddr R=0xal;
SAddr W|=DeviceNO<<1; // Translate device NO to slave address
SAddr R|=DeviceNO<<1; // Translate device NO to slave address
StartCondition;
if(! WriteEE(SAddr W)) //Send slave address
return 0;
if(! WriteEE(Address)) //Send data
return 0;
StartCondition;
if('WriteEE(SAddr_R)) //Send slave address
return 0;
*Pdata=ReadEE(); //read one byte
StopCondition;
return 1;

}

bit WriteEE(unsigned char Data)

{

unsigned char i;

for(i=0;i<8;i++)

{
SCL=0;
SDA=(bit)(Data&0x80); //Shift data to SDA from MSb to LSb
Data<<=1;
SCL=1;

}

//Release SDA

SCL=0;

SDA=1,;

SCL=1,

//Check ACK

if(SDA)
return 0;

SCL=0;

return 1;

}

unsigned char ReadEE()
{

unsigned char i,j,rdata;
SCL=0;

rdata=0;
for(i=0;i<8;i++)

Page 13 of 16 Rev. B

24 Series EEPROM Application Note

{
SCL=1;
//Read SDA
if(SDA==1)
=1
else
J=0;
rdata=(rdata<<1)|j;
SCL=0;
}
return(rdata);

}

bit PollingACK (unsigned char DeviceNO)
{
unsigned char SAddr W=0xa0;
unsigned char Polling Num=100;
SAddr W|=DeviceNO<<1;
while(Polling_ Num--)
{
StartCondition;
if(WriteEE(SAddr W) //Send slave address
{

//Translate device NO to Slave Address
//Check the maximum retry times

StopCondition;
return 1;
H
H

return 0;

}

bit WritePage(unsigned char DeviceNO,unsigned char Address,unsigned char *Pdata)
{
unsigned char SAddr W=0xa0;
unsigned char i;
SAddr W|=DeviceNO<<I,
StartCondition;
if(WriteEE(SAddr_ W)) //Send Slave Address
if(WriteEE(Address)) //Send address

for(i=0;i<PAGESIZE;i++) //Check page size

{

if(!WriteEE(*(Pdata+i)))

return 0;
}

//Translate device NO to Slave Address

else
return 0;
else
return 0;
StopCondition;
return 1;

}

bit Read SEQU_RND(unsigned char DeviceNO,unsigned char Address,unsigned char *Pdata,unsigned char Length)
{

unsigned char SAddr W=0xa0;
unsigned char SAddr R=0xal;
unsigned char i;

SAddr W|=DeviceNO<<1;

//Translate device NO to Slave Address
SAddr R[=DeviceNO<<I;

//Translate device NO to Slave Address

StartCondition;
if(!WriteEE(SAddr W)) //Send Slave Address
return 0;
if(!WriteEE(Address)) //Send address
Page 14 of 16

Rev. B

24 Series EEPROM Application Note

return 0;
StartCondition;
if(! WriteEE(SAddr _R)) //Send Slave Address
return 0;
for(i=1;i<Length;i++)
{
*Pdata=ReadEE();
Pdata++;
SendAck;
}
*Pdata=ReadEE();
StopCondition;
return 1;

}

bit Read SEQU(unsigned char DeviceNO,unsigned char *Pdata,unsigned char Length)

{

unsigned char SAddr R=0xal;

unsigned char i;

SAddr R[=DeviceNO<<1;

StartCondition;

if(! WriteEE(SAddr R)) //Send Slave Address
return 0;

for(i=1;i<Length;i++)

//Translate device NO to Slave Address

*Pdata=ReadEE();
Pdata++;
SendAck;
}
*Pdata=ReadEE();
StopCondition;
return 1;

}

bit ReadByte(unsigned char DeviceNO,unsigned char *Pdata)
{

unsigned char SAddr R=0xal;
SAddr R[=DeviceNO<<1;
StartCondition;
WriteEE(SAddr_R); //Send Slave Address
*Pdata=ReadEE();

StopCondition;

return 1;

}

//Translate device NO to Slave Address

//software reset
void ResetEE()
{
unsigned char i;
StartCondition;
//Send nine sequential bits ‘1’
for(i=0;i<9;i++)
{
SCL=0;
SDA=1;
SCL=1;
H
StartCondition;
StopCondition;

}

Page 15 of 16 Rev. B

24 Series EEPROM Application Note

11. REVISION HISTORY

Revision Date Descriptions
V1.0 Jun.2022 Initial Version
V1.1 July.2023 Add comment
V12 Nov.2025 Add some notes in Section 6

Page 16 of 16

Rev. B

	1. Introduction
	2. Power supply & power on reset
	2.1 Ensure VCC stable
	2.2 Power on reset
	2.3 Power down-up Timing
	2.4 Software reset

	3. Power saving
	4. IO Configuration
	5. Check completion of Write Cycle
	6. Write-protect application
	7. Data throughput
	8. Schematic of typical application
	9. Recommendation of PCB Layout
	10. Reference design of software
	11. REVISION HISTORY

